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1. Introduction

ABSTRACT

The transient response of submerged two-dimensional thin shell subjected to weak
acoustical or mechanical excitations is addressed in this paper. The proposed approach
is first exposed in a detailed manner: it is based on Laplace transform in time, in vacuo
eigenvector expansion with time-dependent coefficients for the structural dynamics
and boundary-integral formulation for the fluid. The projection of the fluid pressure on
the in vacuo eigenvectors leads to a fully coupled system involving the modal time-
dependent displacement coefficients, which are the problem unknowns. They are
simply determined by matrix inversion in the Laplace domain. Application of the
method to the response of a two-dimensional immersed shell to a weak acoustical
excitation is then exposed: the proposed test-case corresponds to the design of
immersed structures subjected to underwater explosions, which is of paramount
importance in naval shipbuilding. Comparison of a numerical calculation based on the
proposed approach with an analytical solution is exposed; versatility of the method is
also highlighted by referring to “classical” FEM/FEM or FEM/BEM simulations. As a
conspicuous feature of the method, calculation of the fluid response functions
corresponding to a given geometry has to be performed once, allowing various
simulations for different material properties of the structure, as well as for various
excitations on the structure. This versatile approach can therefore be efficiently and
extensively used for design purposes.

© 2009 Elsevier Ltd. All rights reserved.

The development of efficient numerical methods to the study of large coupled transient problems remains a challenging
subject, even in the linear regime and despite constantly improving computer capabilities. The behavior of submerged
structures to weak acoustical or mechanical excitations belongs to this problems family, since in a first modeling step, the
fluid medium is usually assumed acoustic, and the structural response of small-amplitude and elastic. In the design process
of submarines or new underwater vehicles for military purposes, numerous simulations must be performed to minimize
their transient responses to underwater explosion [1-3]. The shell width and material or the solicitation characteristics and
location have to be changed to appreciate various configurations. Hence a method that allows not to repeat the whole
numerical calculus for each particular case is of interest.

Such methods are available for simple geometries. More precisely, when the body shape conforms to a coordinate
system in which the acoustic wave equation is separable, exact analytical response functions for the fluid are available in
the time or frequency domains. They can then be used to model the fluid forces on each Fourier or structural modes [4].
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Hence, the response of simple submerged structures to a particular solicitation can be efficiently and rapidly obtained. For
instance, the interaction problem between a shock wave and cylindrical shells configurations are achieved this way by
Huang and Wang [5-8] and lakovlev [9-14]. The three-dimensional problem involving a shock wave and a spherical shell
has also attracted some attention and is tackled in [15,16]. These analytical or semi-analytical models are still extensively
used in industrial applications to gain insight into complex fluid-structure interaction problems, to obtain the structural
response order of magnitude, or in the validation process of numerical and approximate methods [17,18].

For complex geometries, exact analytical response functions for the fluid are not available. Hence numerical methods
have been developed to tackle the fluid-structure interaction problem of the type considered. While finite element
methods (FEM) are commonly used for the solid domain modeling, several choices can be made for the acoustic problem.
FEM are of course appropriate but the coupling procedure become prohibitive in a design step since an infinite fluid
domain has to be represented. Specific numerical procedures, such as infinite elements or artificial boundary conditions at
the fluid domain edges, can be used to prevent waves reflections at the boundaries of the truncated domain [19]. However,
finding such procedures that are both accurate for all frequencies and efficient for complex geometries is still a work-in-
progress [20]. As alternative to the finite elements method for the fluid domain, boundary element methods (BEM) [21]
based on integral formulations are really attractive, since the influence of the energy radiation to infinity is included in the
fundamental solution [22]. Moreover, the method is particularly efficient for an infinite fluid domain, as only the
fluid-structure interface has to be meshed, which reduces the problem dimension by one.

The first numerical coupling between the retarded potential equation—the classical integral formulation for a three-
dimensional acoustic domain—and a finite elements method for the structure is attributed to Huang et al. [23]. Two
difficulties are encountered. The first one is linked to storage requirement: the integral formulation is non-local in space
and time, so the temporal evolution has to be stored at each interface node, and the amount of data necessary to integrate
the equations of motion linearly increases at each time step. The second difficulty is linked to the temporal scheme
stability. The standard retarded potential formulation is unstable for time steps inferior to a critical value [24], preventing
the method from being useful for shock wave-shell interaction problems, where small time-steps are required. Specific
numerical procedures, for instance based on the Figueiredo formulation [25], reduce the standard formulation critical time
step and hence widen the application field of coupled finite elements-retarded potential numerical scheme. However, it is
still not enough for shock wave-shell interaction problems [26].

Restricting storage requirements and stability conditions lead to the development of approximation methods to the
retarded potential formulation. Two limiting cases, namely the “early-time” (or high-frequency) response and the “late-
time” (or low-frequency) response, have been modeled by employing the initial value and final-value theorems to the
Laplace transform of the Kirchhoff's spherical acoustic integral equation [27]. The plane wave approximation was also
investigated for early-time responses [28]. Doubly asymptotic approximations (DAA) [29-31] have been proven to be
adequate for characterizing the acoustic radiation damping affecting the structural responses that are dominated by low-
frequency components [32]. Moreover, due to their direct implementation with finite element techniques for the structure,
these approximations are often used in industrial applications [33,34]. However, the DAA-based methods contain some
drawbacks: they fail to satisfy the early-time consistency requirement [35,36] and suffer from both frequency distortions
and inaccurate radiation damping in the intermediate frequency domain [26,37]. Serious doubts can hence be put on the
solution accuracy for highly transient dynamics of long duration [38], making these approximate methods unable to treat
the structural response to underwater explosion bubble [39].

Recently, Chappell et al. [40] tackled successfully the boundary element method instability problem by reformulating
the integral equation in the time-domain, thanks to the well-known Burton and Miller approach in the frequency domain
[41]. Although it is applied to a purely radiation problem, it appears to be promising for highly transient fluid-structure
interaction problems and could bypass the use of DAA methods, when coupling with finite element for the structure. An
alternative is proposed in this paper. The integral equation is formulated in the Laplace domain and is coupled with the in
vacuo modal decomposition for the structural dynamics. Spurious resonances in the fluid problem are eliminated with the
use of the so-called “CHIEF points method”, which is of convenient use for engineering applications; details on the method
can for instance be found in [42].

The resulting coupling procedure is as versatile as the classical analytical or semi-analytical methods once the response
functions are evaluated: there is no need to perform the whole numerical calculus again when a parameter value is
changing. Due to both its formulation in the Laplace domain and the use of the modal decomposition, it is also suitable for
parallel processing, which makes it efficient enough to be used for design purposes.

The method is developed here in a two-dimensional framework. This makes sense in the design or pre-design process
since the detailed geometry is not determined yet. At this step, it is therefore useful to rapidly appreciate the acoustic
solicitation effects on a relatively simple two-dimensional shape, which would be for instance representative of a full
system part. This framework is moreover particularly meaningful for the case of elongated structures, for which qualitative
as well as quantitative features are captured by a two-dimensional approach, as demonstrated for circular cylindrical shells
[12,13,43]. The proposed method can indeed be seen as a first modeling step towards the more general three-dimensional
problem.

The paper is organized as follows: the classical two-dimensional thin shell equations and the in vacuo modal
decomposition are recalled in Section 2 for the sake of completeness. In the third part, the boundary integral formulation
for the fluid are introduced and the fluid force explicitly expressed. The fluid-structure interaction problem is solved in
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Section 4. Last, the method is illustrated for the shock wave/submerged circular thin shell interaction problem. Some
method improvements and extensions are proposed in the conclusion.

2. Structural dynamics

We consider a two-dimensional elastic shell of constant thickness h and arbitrary shape, submerged in an infinite fluid
medium and subjected to a weak incident acoustic excitation. A schematic of the problem is shown in Fig. 1. The shell is
assumed thin and composed of a linear, homogeneous and isotropic elastic material of density p,. Under the Love-Kirchhoff
hypothesis and neglecting the rotary inertia effects, the linear equations of motion for the shell can be written [44,45]:

*X
22 ® O FILXx6) = KX, t) — p(x, t)). M

The variables are normalized according to Table 1, with R a characteristic shell length, ¢; the speed of sound in the fluid and
py the fluid density. The quantity X(x, t) = (Xx(X, t), X;(X, )" denotes the dimensionless displacement vector at time t and
position vector xX(«), with o the curvilinear coordinate of the shell. X, and X; are the tangential and normal in-plane
displacements of the neutral surface of the shell, respectively. [L] is the partial differential operator in space. The
dimensionless number K is defined by £ = M/¢&, with M = p¢/p, the density ratio and &£ = h/R the normalized shell
thickness. The vector f corresponds to the force density term, representing a given mechanical excitation or induced by
internal structures, and p represents the loading due to the surrounding fluid medium.

This fluid-structure interaction problem can be solved, without loss of generality, thanks to the in vacuo modal
decomposition of the shell, since the corresponding eigenvectors form a complete set. The displacement vector of the
submerged shell is therefore formulated as follows:

XX, ) =Y dn(t)®m(X), )

where dn(t) are the time-dependent modal displacement coefficients. The vectors @n(X) = (P%(X), dﬁi(x))T represent the in
vacuo eigenfunctions of the neutral surface of the shell, and satisfy the following eigenvalue problem and orthogonality
property:

[L]®p = Q2Dy, 3)

/F @] (%)@ (X) dSx = SpmM, @

with Q, the eigenvalues and J,, the Kronecker symbol. Substitution of the modal decomposition, Eq. (2), for the
displacement in Eq. (1), followed by the use of Eq. (3), multiplication of the resulting relation by (Dfl, and integration along
the shell surface, yield the modal equation for the time-dependent displacement coefficient:

Mdn(6) + Kndn(£) = K(fa(t) — Pa(t), 5)

Shell T

Infinite fluid medium Q Incident acoustic

excitation

Fig. 1. Submerged two-dimensional thin shell subjected to an incident acoustic excitation.

Table 1
Normalization factors for the variables.

Variable Normalization factor
Length R
Time R/ct
Displacement R
Velocity [
i 2
Force density prct

2
Pressure PrC;




C. Leblond, J.-F. Sigrist / Journal of Sound and Vibration 329 (2010) 56-71 59

with K, the modal stiffness given by K, = QﬁMn. The term f,, represents the projection of the given mechanical excitation on
the n th eigenfunction and the modal fluid force coefficient, p;, is the fluid loading projection on the same quantity:

i) = [ @h00fex. 0dSx, o) = [ D00 0 dSx. ®)
In order to solve each modal equation (5), the fluid force coefficient must be explicitly expressed as a function of the given

acoustic excitation, the shell geometry and the time-dependent displacement coefficients. This is the purpose of the
following section.

3. Fluid dynamics
3.1. The integral equation formulation

We consider a two-dimensional finite object, with regular boundary surface I', submerged in an infinite two-
dimensional exterior acoustic field €, see Fig. 1. Q is filled with a homogeneous compressible acoustic medium governed by
the wave equation for the fluid pressure p. Assuming that the shell is subjected to small-amplitude motions and
normalizing the variables according to Table 1, the fluid medium is governed by the initial-boundary value problem:

2
E’? - Vz}p(x, t)=0 inQxR,, 7
px,00=0, px,0=0 inf, ®)
op _ov
E(’Q t) = —a(xa tngy on ' x Ry, 9

where v denotes the boundary velocity, initially at rest, and ny the outward unit normal vector to I" at Xx. Then, assuming
that I' is locally differentiable at x, the fluid pressure on the boundary may be represented by the following integral
equation [46,47]:

3P0 = o) = S((E xp) on <., (10)
2 ony
where the single-layer and double-layer potentials, S and D, are defined by
[+
S(px, 1) = / /g(x —X,t—1)pX,1)dSx dr, an

o Jr
v oog , ,

D(p(X, b)) = / / — X —X,t— 10X, 1)dSx dt, 12)

Jo Jrony

In Eqgs.(11) and (12), t* has to be understood as t* = t + ¢ with ¢ arbitrarily small. The dimensionless fundamental solution
of the two-dimensional wave equation is given by [48,49]

Ut — 1x))

2062 — x[2

with U the Heaviside function. Note that the integral equation (10) involves space-time integrals and is hence non-local in
space and time. Contrary to the three-dimensional case, where the fundamental solution contains the term J(t — |x|) with ¢
the Dirac delta function, it cannot be reformulated with a surface integral only, like the well-known retarded potential
integral equation. The integral equation is however linear and involves a temporal convolution product in R,, so employing
the convolution theorem, it becomes local in the Laplace domain. Moreover, by using the boundary conditions Eq. (9), the
integral equation can be written:

g, t) = 13)

P(x,5) = DPX,s)) + S(SU(X,5)nx) on I x B, (14)

N =

with s the Laplace variable belonging to the Bromwich contour 3. The Laplace transforms of the single and double-layer
potentials take the form:

8@ = [ FHsix —Xpx.5)dSx. as)

D(P(X,9)) = /r - %Hﬁ”(iSIX — X - Ny P(X,5)dSx, (16)
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where both the fundamental solution equation (13) and its normal derivative are written explicitly in the Laplace domain.
The quantities Hg” and H‘ll) denote the Bessel functions of the third kind, also called the Hankel functions [50]. Eq. (16) is
derived by using the following geometrical relation:

X - x| _ X-X

= —€xx - Ny ith ey = ——-. 17
on, xx My W1 XX X—X| a7

In accordance with the integral equation (14), the fluid pressure can symbolically be written as

PX,s) = [1(X,5)sV(X,s)nx, II(X,S) = [1/2 - Dx, s)] _1§(x, s), (18)

where $(x,s) and D(x, s) result from the evaluation of the integral operators S and D respectively, achieved for instance by
applying a boundary element method to Egs. (15) and (16). Such a computation is realized for the particular case of a
circular geometry in Section 5.

Some remarks have to be made here. One of the drawbacks frequently addressed in boundary elements methods in the
frequency domain is that the surface Helmholtz integration fails to yield unique solutions at certain critical frequencies.
They are known to be associated with the eigenfrequencies of the interior problem and do not represent any kind of
physical resonance. At these frequencies, the integral operators are singular and become strongly ill-conditioned in their
surroundings. As a consequence, the solution displays a non-physical behavior. Some methods, such as the Burton and
Miller approach or the so-called “CHIEF point method” [41,42], are often employed to deal successively with these
problems. Moreover, it is argued by Chappell et al. [40] that the integral formulation in the temporal domain implicitly
contains these critical frequencies. Although they are not in itself a cause of instability, the loss of accuracy for the high
frequencies due to the discretization leads to the deviation of the real part of the spurious eigenfrequencies in the right
half-plane, which actually induces an unstable behavior, often observed when temporal schemes are used without the
Burton and Miller approach.

In order to obtain the solution in the time domain, the integral operators are here first expressed in the Laplace domain.
More precisely, they are evaluated on the Bromwich contour, i.e., on the line defined by s = ¢ + iw with ¢ fixed and strictly
positive and o varying in ] — oo, +oo[. The integral operators are hence not evaluated on the imaginary axis, where the
spurious eigenfrequencies lie, and are regular for all points of the Bromwich contour. However, they become ill-conditioned
near those spurious eigenfrequencies, which may deteriorate the accuracy of the temporal solution.

That is the reason why the proposed approach is developed within the framework of the “CHIEF points method” for the
BEM resolution of the fluid acoustic problem; this ensures that the influence of spurious frequencies on the numerical
calculation remains negligible. Furthermore, the imaginary part of the Bromwich contour is limited, for numerical purpose,
to a maximum value wy,.

This means that the frequencies beyond wy, are simply neglected, and not implicitly used as in the case of a temporal
scheme. This prevents their wrong evaluations and deviations in the right half-plane, leading to the instability issues. These
comments will be checked in Section 5, for the particular case of a shock wave/circular thin shell interaction problem. First
of all, the symbolic equation (18) is exploited in the next section in order to explicitly express the modal fluid force
coefficient, p,, appearing in the modal equation (5).

3.2. Expression of the modal fluid force coefficients

By virtue of the acoustic problem linearity, the fluid pressure is classically divided into three components: p;, p4, and pr.
The incident pressure, p;, is a given data, corresponding to the incident acoustic excitation and obtained without taking into
account the submerged body. The second one, p,, denotes the diffracted pressure by the body assumed fixed and rigid. It is
introduced in order to balance the normal component of the incident wave velocity on the body surface, v; - ny, which is
also a given data. The last component, p;, corresponds to the pressure radiated by the submerged body deformations. It is
the only part coupled with the shell dynamics and should be expressed as a function of the modal displacement
coefficients. The boundary conditions of the diffracted and radiated pressures on the shell surface are hence given by

OPd Pr x.t) = —X(x. iy 19)

any, (X, 1) = vi(X, Hny, on,

It is also useful to introduce the vectors p;, p4, and p, such that only their normal components on the shell boundary are
non-zero and given by p;, p4, and py, respectively. Hence the fluid loading appearing in the shell equation (1) can be written
as p = p; + Py + P; and the modal fluid force coefficients defined by Eq. (6) take the form

pa(t) = /F ®TXPi(X. 1) + Pa(X. £) + Py(X, 1) dSy. 20)

Then performing a modal decomposition of the last two vectors such that

1 .
Pux.0) = Y PiOPa).  PIO = 57 [ Ph00Pux. 0 dSx. @1
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1 : 4
Pe(x ) = S pO®a00. PP = 37 [ h00pi(x 0)dSx 22)
m .

and using the orthogonality property, Eq. (4), the modal fluid force coefficients, Eq. (20), can be written as
Pn(t) = P} (t) + Mapg(e) + Mnpr (t), (23

where p! denotes the projection of the incident pressure on the normal component of the nth eigenvector, namely

pi(t) = / DL (X)pi(X, 1) dSy. 24)
r

The last two terms of the right-hand side of Eq. (23) must now be expressed as a function of the given incident velocity and
shell displacements. For this purpose, it is first useful to introduce the modal decomposition of the normal velocity induced
by the incident wave:

0 )
< ) =S OO, V(D) = Mim /r L (XOVi(X, )y dSy. 25)

Vi (X, t)nx

Then substituting the normal components of the modal decompositions of both the incident normal velocity, Eq. (25), and
the shell displacements, Eq. (2), into the boundary condition equation (19) yields

Mg Pr i iy S 4

a0 = 20O, Fp 060 = = Zdn(OP). (26)

Owing to the acoustic problem linearity, the diffracted and radiated pressures are, respectively, sought in the form

PaX,t) =Y Pam.0), PrX )= Prm(X0), 27)

so that each term of the above right-hand sides satisfies a unique component of the full boundary conditions, Eq. (26):

6pd,m ap r.m
ony ony

(X, t) = U (O D5, (), X, 1) = ~dn() D5 (X). (28)

Note that only the m th eigenfunction appears in the right-hand sides of the above boundary conditions. However, the
influence of all the shell modes are contained implicitly in the terms pg,, and p,m due to the fluid coupling. By turning
Eq. (28) into the Laplace domain, and by analogy with the general solution, Eq. (18), the Laplace transforms of the terms
Pam and pr, can be written in the form

Pam(X,5) = —s0{" ()T (X, )P, (X), 29)

Drm(X,5) = s2dm($)IT (X, 5) D5, (%), 30

where it is assumed that at t = 0 the incident wave has not reached the submerged body yet, and that the shell is initially at
rest. Note that the quantities plj(t) and py(t), required for the evaluation of the modal fluid force coefficient pn(t), Eq. (23),
represent, respectively, the diffracted and radiated pressures influence on the n th shell mode. As for the above terms,
Pam(X, t) and p; m(X, t), they denote the pressure generated by the m th component of the diffracted and radiated pressure,
respectively, and experienced by all the shell modes. Therefore, the first step towards the formulation of plj(t) and p}(t)
consists in extracting the pressure components, on each structural mode, implicitly contains in pg (X, t) and p.m(X, t). This
can be achieved with the relation equations (21) and (22). Hence, the n th components of the diffracted and radiated
pressure modal coefficients, denoted by pj () and p},,(t), and generated by the m th modes of, respectively, the incident
velocity and the shell displacement, take the form

PILn(s) = —sP(s) - [ @001 0x. 05,005, 31)
’ Mn. r

o an 1 [ - ;

B (S) = S2dm(s) / D5 (X1 (X, 5)DF, (%) dSy. (32)
’ Mn Jr

It is convenient to introduce the complex transfer function, 2,,,,,1(5). such that

Znm(S) = /r @ (X)IT (X, 5)P5, (X) dSx. (33)
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In the Laplace domain, Z,, quantifies the link between the n th and m th shell eigenfunctions, arising from the fluid
presence. The terms p/j(t) and py(t) are finally obtained by summing the contribution of all the incident velocity and shell
displacement modes, respectively:

AN AN 1 5 ~m
Pa®) => Pams) =— i > Zam(s)s07'(s), (34)

A a1 1 ~ -
DI =D Brmls) = Ezzn,mc)szdm(s» 35)

The modal fluid force coefficients, Eq. (23), are therefore fully determined in the Laplace domain by
Pu(®) =S = Y Zum($)s07 ) + > Znm($)s2dm(s). (36)
m m

It appears that all the structural modes are involved in the n th modal fluid force coefficient. The modal equations, given by
Eq. (5), are hence coupled by the fluid. The above expression, Eq. (36), holds for all two-dimensional thin shells whose
boundary surface is regular, even if the method of separation of variables for the fluid cannot be used.

From the numerical computation point of view, the evaluation of the transfer functions Z,(s), Eq. (33), is the most
time-consuming part of the method. Firstly, the integral operators, $(x, s) and D(x, s), must be computed with a boundary
element method for each point of the Laplace variable. Then the quantity I1(x,s) is evaluated with a simple matrix
inversion, Eq. (18), once again for each point of the Laplace vector. Each matrix to invert is full and of size N2, with N
denoting the boundary element number. However, the calculations of S(x, s), D(x, s) and the matrix inversion equation (18)
are independent for each required value of s, which makes their numerical evaluations suitable to parallel processing.

The matrix [1(x, s) is moreover independent on the structural modes and has to be evaluated only once. Since it depends
only on the wetted surface geometry, it can be used for different materials and shell widths, which is particularly versatile.
Once this matrix is evaluated, the transfer functions, Eq. (33), rapidly follow from simple multiplications and surface
integrations. Their numerical evaluations can also be achieved thanks to parallel processing, since they are uncoupled.

If necessary, the modal fluid force coefficients can be expressed in the temporal domain by applying the convolution
theorem to Eq. (36), which yields

t t .
po) =P[O =3 [ Zun(t =P @ e+ [zt~ D 37)

The kernels, Z,m(t), also called response functions, denote the fluid influence on the n th shell modes, induced by an
impulsional motion of the m th modes. The convolution products reflect that the response is not instantaneous and
involves acoustic wave propagation phenomena in the fluid domain. As expected, the diffracted pressure influence is
expressed in terms of the response functions and the modal coefficients of the incident normal velocity. As for the radiated
pressure influence, it involves the same response functions and the modal shell displacements coefficients, and is therefore
the only pressure component coupled with the shell elasticity.

4. Resolution method for the fluid-structure interaction problem

Once the modal fluid force coefficients are put into the form of Eq. (37), the fluid-structure interaction problem can be
easily solved. The substitution of Eq. (37) into each modal equation (5) yields an infinite number of fully coupled integro-
differential equations. After truncation to a finite number of modes, N, the resulting system could be solved by a time-
marching scheme. However, its linearity suggests the Laplace transform use to turn it into a simple algebraic matrix
system, for each point of the Laplace variable:

M(s)d(s) = Kf(s) + KZ(s)sv(s), (38)

where the matrices M(s) and Z(s) are defined such that M,(s) = $2KZ pm(S) for msn, Myy(s) = s (Mn +KZ n,n(s)) + Ky, and

Zn(S) = Zma(s), for all n and m in [1; N]. As for the vectors fl(s), f(s), and V(s), their components are, respectively, given by
dn(s) = du(s), fn(s) =fn(s) — Pi(s), and ¥ (s) = 9} (s), for all n in [1; N]. The modal displacement coefficients, contained in the
vector d(s), are therefore obtained in the Laplace domain through simple numerical matrix inversions, with the Laplace
variable s as a parameter,

d(s) = K[M(s)]7 £ (s) + KIM(S)] 1 Z(s)sv(s). (39)

The time-dependent modal displacement coefficients are then expressed in the time domain with a numerical inverse
Laplace transform. This operation is carried out by an FFT-based algorithm together with a quotient-difference algorithm to
accelerate the FFT series convergence and thus enhance solution accuracy [51,52]. This direct approach is useful when the
given mechanical excitation, incident pressure, and incident normal velocity can be explicitly expressed in the Laplace
domain, as in the following section example. If their expressions are known in the temporal domain only and neither
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analytical nor numerical Laplace transforms are performed, an alternative is still possible by applying the convolution
theorem to Eq. (39), which yields

t
dt =K /0 t LM )t — Df(t)dt + K /0 LYV Z(s))(t — T)¥(T)dT, (40)

where £71()(t) denotes the Laplace transform inversion. The matrices resulting from this operation contain the response
functions of the whole interaction problem, involving the shell elasticity, the modes coupling by the fluid presence and
the acoustic waves influence. From a numerical computation point of view, this method is more time-consuming than the
direct numerical Laplace transform inversion of the modal displacement coefficients, Eq. (39), since the inversion of the
matrix M(s) has first to be fully realized, then the numerical Laplace inversion of each of the matrix components performed,
and finally matrix-vector convolution products achieved. Once the time-dependent modal displacement coefficients are
obtained with one of the two aforementioned methods, the shell displacement field is directly obtained by the modal
recomposition, Eq. (2).

5. Method illustration for the weak shock wave/circular thin shell interaction problem

The general method is here applied to the particular case of a two-dimensional circular evacuated thin shell of constant
thickness h and radius R, submerged in an infinite fluid medium and subjected to a weak shock wave. A schematic of the
problem is shown in Fig. 2. Since this case is well documented in the scientific literature, see for instance [13] and the
references therein, it is well suited for the present approach validation.

5.1. Structural dynamics

Normalizing the variables according to Table 1, the shell equations take obviously the same form as Eq. (1), without
mechanical excitations, and with the shell displacements given by X(0, t) = (Uy(0, 1), U.(0,))". By taking into account the
bending stiffness, the partial differential operator [L] can be explicitly written as [44,45]

5. 02 0 0
T (6960>
d 20 5 ot
@—2% 1+}'W

[L=c : (41)

where the dimensionless numbers C and A are, respectively, defined by C = ¢;/c; and 2= h? /(12R?). The quantity cs
denotes the longitudinal speed of sound in the shell given by ¢; = \/E/(p,(1 — v?)), with pq, E, and v, respectively, the shell
density, Young’s modulus, and Poisson’s ratio. The in vacuo modal decomposition of the shell displacement can be easily
obtained with a semi-analytical approach, due to the periodicity along 0. For this purpose, the shell displacement is sought
in the form 30° ,(UYsin(n0), U,cos(n))Tel, Its substitution into the shell equations without right-hand side yields, for
each n, the following in vacuo eigenvalue/eigenvector problem:

14252 1+ 2°nn]| (U] Ul
cz(+2) (+2) tl=2 7). (42)
A+ n*n (1 +27n% |\ Up ur
This problem is then solved with a classical Arnoldi method [53]. For each n, two eigenpairs are admitted, corresponding to
the two branches of the spectrum: the first branch, denoted by p = 1 in the following, is dominated by the shell bending,
and the second one, denoted by p = 2, is dominated by the shell traction [45]. For n = 0, only the traction branch has a
Infinite fluid medium

Up€p

Incident acoustic
excitation

Circular thin shell

Fig. 2. Submerged two-dimensional circular thin shell subjected to an incident acoustic excitation.
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physical meaning and corresponds to the breathing mode. The modal decomposition of the time-dependent displacement
vector can therefore be written as

oo 2
X(0,6) = doy()®02(0) + > > dup(t)Prp(0), (43)

n=1 p=1

where the terms d,,,(t) are the time-dependent displacement coefficients corresponding to the p th branch of the n th
Fourier mode, and the quantities ®,p(0) denote the corresponding eigenfunctions, whose components are defined in terms

of the solutions of Eq. (42):
@’ (0) U?_sin(n)
_ np _ np
Pup(0) = (égp(9)> B (UZpCOS(n0)>' @9

Therefore, the functions ®p,(0) satisfy both the eigenvalue problem [L] ®pp(0) = Qﬁp(bnp(()), which is another formulation
of Eq. (42), and the orthogonality property of the same form of Eq. (4).

The modal mass is here explicitly given by My, = 27T(U62)2 for n and p equal to 0 and 2, respectively, and M, =
77:[(U{fp)2 + (U,rlp)z] for n>1 and p =1 or 2. The in vacuo circular eigenfunctions are now fully determined and the usual
manipulations, recalled in Section 2, lead to the modal equations governing the shell dynamics:

Mipdnp(t) + Knpdnp(t) = —KPnp(t), (45)
with the modal stiffness K, defined here by Ky, = Qﬁpan, and the modal fluid force coefficient p,, given by
pun(®) = [ o O)p(0.0)do. (46)
These coefficients are still to be explicitly expressed to solve the modal equations.
5.2. The modal fluid force coefficients

The fluid loading formulation, Eq. (36), can be simplified for the particular case of a circular thin shell submerged in an
infinite fluid medium. Contrary to the general case, the geometrical revolution symmetry induces here a decoupling of the
Fourier modes. Finally, by taking explicitly into account the periodicity along  and following the general method of Section
3.2, it is easily shown that only the two branches of a Fourier mode are coupled by the fluid presence. The fluid force
coefficients take therefore the form

n AN

2 2 . .
Prp(®) = D7) =D Zpq$)SU](8) + D Z))((5)5> dng(9). (47)
q=1 q=1

The complex transfer functions, Z;!q(s) represent the fluid loading induced by the impulsional solicitation of the g th branch
of the n th Fourier mode, on the p th branch. They can be explicitly written in the Laplace domain as

~n 2n .
Zpg®) = | Prp(OAO.5)P1(0)do. 48)

At this step, it is possible to check the method validity with the response functions obtained analytically for instance by
lakovlev [13] and defined in the Laplace domain by

Kn(s)

Zn(s) = T sKh (5) 49)
It is easily shown that the present formulation and the analytical one are linked with the following relation:
R 12 1 N
Zns) = = a5 2,,(5). (50)

T p=1 (Uy(',;p)z + (U)’:[p)

The left-hand side term corresponds to the fluid loading induced by the impulsional solicitation of the n th Fourier shell
mode. The right-hand side results from the complex transfer function combination Z;p(s) for a fixed n. The comparison
between their inverse Laplace transforms performed numerically provides a way to evaluate the numerical computation of
the integral operator A6, s).

Figs. 3 and 4 compare the analytical and numerical calculations of response functions in the temporal domain (i.e. the
Laplace inverse of Z,(s)) for n =2 and 80. Numerical calculation are performed with BEM discretization, using 1000
boundary elements; as for the time sampling, 512 calculation points are used in the interval [0, T*], with T* = 5. Constant
and linear schemes are used for the numerical calculation of the integrals and yield identical results in the present case.

Numerical calculation of the Zzyq(s) for each n, p, g, and s is performed with a BEM method using CHIEF points [42] in
order to tackle the spurious frequency problem. Fig. 5 compares the BEM calculation with and without CHIEF points to the
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Fig. 3. Comparison of the analytical and computed response functions in the temporal domain for n = 2.
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Fig. 4. Comparison of the analytical and computed response functions in the temporal domain for n = 80.

analytical expression of Z,(s*) (with s* = SR/c; being the non-dimensional Laplace variable) in the Laplace domain and
highlights the numerical treatment of the spurious frequencies.

5.3. Resolution of the fluid—-structure interaction problem

Substituting the fluid loading expression, Eq. (47) in the modal equation, Eq. (45), and turning the resulting system in
the Laplace domain, yield for each n th Fourier modes, the algebraic matrix equation:

M, (5)dn(s) = KEn(S) + KZn(5)sVn(S), (51)

where the matrlces M.,.(s) and Z,(s) are defined such that anq(s) = slequ(s) for p#gq, anp(s) = 5?(Mnp + ICpr(s)) + Kip,
and Z,,pq(s) q(s) for p and q in [1; 2]. As for the vectors dn(s) f,.(s), and V,(s), their components are, respectively, given by
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Fig. 5. Computation of a modal response function with a BEM method with and without CHIEF points.

dnp(s) = dnp(s), Fap(s) = —pIP(s), and Vny(s) = D(s), for all p =1,2. As described in Section 4, the modal displacement
coefficients in the Laplace domain are therefore obtained through simple numerical matrix inversions, with the only
difference that the Fourier modes are here not coupled and the matrices to invert are of size 2 x 2. Then the shell
displacement field is derived by the numerical inversion of the modal displacement coefficient Laplace transform, and the
modal recomposition, Eq. (43).

Eq. (51) is the governing equation for the immersed shell dynamics when subjected to an incoming pressure loading,
which is described by the incident pressure term and by the diffracted pressure term: the former is given by the incident
pressure wave (—pi?(s)), while the latter is related to the incident velocity wave (#{7(s)). In the present case, the incident
pressure wave and its corresponding velocity field are computed according to the analytical model proposed by Cole [54];
the incoming pressure loading is described as an exponentially decaying function:

P(t) = Illexp(—t/7), (52)

with IT and 7 given by the following correlations:

a\ b ay €
H:H()(%) . T=TOCa<%),
where C stands for the mass of explosive and D is the standoff point, a, b, and ¢ depend on the type of explosive [54].

Implementation of the imposed pressure p' and velocity v in the Laplace domain poses no particular difficulty and is
beyond the scope of the present paper; the methodology adopted in the present case is very similar to what is proposed by
lakovlev [12], which could be referred to for further details on the matter.

An application example is proposed with the following characteristics: R=1, h=0.1m, p,=7800kg/m3,
E=21x10""Pa, v=023, ps = 1000 kg/m3, c =1500m/s, C = 1kg, D = 5m. Fig. 6 features the computed displacement
field (radial component u.(6, t)) at various locations on the shell circumference (0 = 0, /4, /3,37 /4, and ) and compares
the numerical simulation with a reference analytical solution (as presented for instance in [55]).

Calculation is performed with some 90 boundary elements and yields a qualitative good agreement with the analytical
solution in the proposed two-dimensional case under consideration.

5.4. On the efficiency and versatility of the proposed method

BEM calculation of the modal response functions of the submerged structure is a conspicuous feature of the proposed
method which makes it versatile and promising in the industrial context.

On the one hand, BEM-based calculation allows for a dramatic computational cost reduction as it only requires the mesh
of the wetted surface; in comparison FEM-based calculation requires the modeling and meshing of a significant part of the
fluid surrounding the submerged structure. Fig. 7 gives an example of an FEM-based calculation for a circular elastic shell
immersed within a fluid and subjected to an acoustic pulse, i.e. in the same configuration as described in Fig. 2, but with
different parameters. Calculation is performed with the ABAQUS finite element code, assuming a plane wave propagation of
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Fig. 6. Submerged shell subjected to a pressure loading: comparison of numerical and analytical calculation.

(a)

Fig. 7. FEM calculation of the dynamic response of a submerged circular shell subjected to an acoustic pulse.
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Fig. 8. Radial and ortho-radial displacement of a submerged shell subjected to an acoustic pulse with FEM calculation (thick curves) and with the
proposed method (thin curves).

the acoustic pulse; such finite element calculation is representative of what can be performed for design and/or pre-design
purposes with industrial numerical tools.

Fig. 8 gives the time history of the computed radial and ortho-radial displacements at 6 = 0, /4, /2,27 /4, and 7: finite
element computation with the ABAQUS code and BEM-based response function computation with the MATLAB code are
compared.!

Since the two simulations are carried out with different numerical tools, one can only draw some qualitative
conclusions as for computational cost. For the sake of illustration, it is however worth noting the computational effort with
both approaches. With the MATLAB code developed for the present study, a single computation of the shell response
(including the evaluation of the eigenmodes and the calculation of the response function) can be run within an hour, while
a single FEM calculation can be run overnight with the ABAQUS code on a standard PC, with no particular difficulty.
Although affordable for industrial application, such computational cost can become prohibitive when one wishes to
perform numerous calculations, for instance when trying to estimate the influence of a given design parameter on the
global behavior of the system under concern. BEM-based oriented simulations can be employed for industrial purposes, but
they also tend to be very costly and cannot be used for systematic and repetitive calculations.

! In the simulation presented in the previous subsection, the acoustic pulse was assumed to propagate as a circular wave; in the ABAQUS simulation a
plane wave propagation is assumed: therefore, the finite element simulation and the BEM-based with response function simulation are not expected to
yield an identical result. However, as conveyed by Fig. 8, there is a good qualitative agreement between the two simulations.
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On the other hand, proposing a response-function oriented approach as in the present case allows for systematic
computation since once the response functions have been determined, numerous calculations can be rapidly performed
while changing the problem parameters. More precisely, the numerical evaluation of the quantity I7(x,s), defined in
Eq. (18), is the most time-consuming part of the method, but it depends only on the wetted surface geometry and can be
used for different materials and shell widths. Once this matrix is evaluated, the transfer functions, Eq. (33), can be rapidly
computed. They involve the numerical evaluation of the system eigenmodes and therefore depend on the shell width and
material. They nevertheless remain independent on an internal or external loading.

In the case depicted in Fig. 2 for instance, the influence of the shell thickness h or the explosion distance D (which only
influence the loading pressure) can be estimated with straightforward calculations, see Figs. 9 and 10. Once the quantity
I1(x,s) and the response functions are computed, the response of the structure can be calculated in a short period of time:
for the sake of illustration, the previous calculation have been performed with a dedicated MATLAB tool. While the first

— h=0.1 m w=—=h=0.056 m
\ —h=0.02m —h=0.01m

u(6=0,t) [mm]

0 0.5 1 1.5 2 2.5
t [ms]
Fig. 9. Influence of the shell thickness: the first simulation involves the determination of the quantity I7(x,s), the system eigenmodes and the response

functions; the following simulations only require the determination of the system eigenmodes and the response functions; the shock response follows
from straightforward calculations with the previously computed quantity I7(x,s).

u(6=0,t) [mm]

0 0.5 1 1.5 2 2.5
t [ms]
Fig. 10. Influence of the explosion distance: the first simulation involves the determination of the quantity IT(x,s), the system eigenmodes and the

calculation of the response functions; the shock response for the following simulations come from straightforward calculations with the previously
computed response functions, only the analytical calculation of the pressure pulse is varied.
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calculation of each series require some 30 min in order to compute the response functions, each subsequent individual
calculation only require 3 min, using the previously computed response functions. In a “complete” FEM or BEM-based
calculation, any change on those parameters would require a specific run with appreciatively the same computational cost.

6. Conclusion

In the present paper, a numerical method for the interaction between a submerged shell and an acoustic pressure pulse
has been proposed for application to the pre-design or the design of naval structures subjected to underwater explosions.
The method is based on a classical modal reduction technique for the structure sub-problem together with a dimensional
reduction of the fluid sub-problem with a BEM discretization of the acoustic wave propagation.

It therefore provides a versatile and robust approach, which is well suited for industrial application since it is based on
the evaluation of response functions which can be used in various configurations without performing additional
calculation. The proposed method is also designed in order to be applicable to parallel processing, which makes it efficient
enough to be used for design purposes.

The underlying principle of the method is formulated in a general case and applied in a particular validation example,
namely in the case of a two-dimensional elastic submerged shell subjected to a pressure loading which is representative of
an underwater explosion; as a conspicuous feature of the proposed method, a qualitative agreement between analytical
and numerical calculation is highlighted. Efficiency of the so-called “CHIEF points method” associated to the BEM approach
is also reported in the application example to tackle the “spurious frequency” problem in the resolution of the fluid
pressure field.

Possible extensions of the method are under study for instance in order to turn to three-dimensional problems;
reduction techniques such as POD or eigenmodes basis are also considered to deal with a nonlinear description of the
structure dynamics, together with BEM coupling for the fluid pressure loading. Further investigation on the shell dynamic
modeling (thin/thick shell models) will be presented in related publications.
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